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Lectures II and III at Taller, UNIANDES.

DEDICATED TO THE INTERACTION OF
GEOMETRY AND DIFFERENTIAL EQUATIONS.

RECALLING A VERY HAPPY OCCASION:
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Lectures II and III at Taller, UNIANDES.

DEDICATED TO THE INTERACTION OF
GEOMETRY AND DIFFERENTIAL EQUATIONS.

RECALLING A VERY HAPPY OCCASION:

The Fiftieth Aniversary of

Peixoto’s Structurally Stability Theorem
for Generic Vector Fields on 2 - Manifolds.
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I- Generalities and Plan for Today’s Lecture.

I will focus on results that evolved from my collaboration with Carlos
Gutiérrez (1944 - 2008), which began to be published in 1982, Asterisque,
dealing with the Structurally Stable Principal Curvature Configurations on
Surfaces in R

3, under small perturbations of their immersions.

This is our link with Peixoto’s Theorem for Structurally Stable Vector
Fields on Surfaces, historical landmark in the Geometric Theory of
Differential Equations and Dynamical Systems. Topology 1962.

The Principal Configuration on an Immersed Surface is the counterpart of
the Phase Portrait of an ODE, thought for the case of the two families of
principal curvature lines – maximal and minimal – on a surface in R

3.
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This presentation connects our subject with the works on Principal
Curvature Configurations of remarkable mathematicians of a more distant
past,
such as:

Monge, after Euler

Dupin, Theory I.

and

Darboux, Theory II, after Poincaré.

Here would come Peixoto’s Contribution, after Andronov - Pontrjagin · · ·
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Pictorial Outline: Euler, Normal Curvature and Principal

Directions.

Figure: Principal Directions and Curvatures.
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Pictorial Outline: Monge, 1796. First Prin. Config.

Figure: Monge’s Ellipsoid: First Principal Config. Illustration from E. Ghys site.
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Pictorial Outline: Dupin. First Qualitative Theory for

Prin. Configs, 1818.

Figure: Dupin’s Theorem. Integrable Principal Configurations.
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Pictorial Outline: G. Darboux. A Generic Theory for

Princ. Configs. near Umbilic Points, 1896.

Figure: Darbouxian Umbilic Points for Cω, after Poincaré’s ODEs, 1881, and
Soto-Gutierrez for C 4, 1982. Definition in a Monge chart below.
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After Poincaré. Singularities and MORE...

saddle attracting node focus

limit cycle linear flow on the Torus.
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Pão de Açúcar
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Monte Tolima
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II. Analytic Outline of Umbilic Singularities.

A local Monge chart near an umbilic point

is given by α(u, v) = (u, v , h(u, v)), where

h(u, v) =
k

2
(u2 + v2) +

a

6
u3 +

b

2
uv2 +

c

6
v3 +

A

24
u4 +

B

6
u3v

+
C

4
u2v2 +

D

6
uv3 +

E

24
v4 +

a50

120
u5 +

a41

24
u4v

+
a32

12
u3v2 +

a23

12
u2v3 +

a14

24
uv4 +

a05

120
v5 + O(6).

(1)

Question: How to relate these coefficients with the
previous pictures?
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Classification of umbilic points on surfaces. Analytic and

Pictorial.

Darbouxian umbilic points. Classification depends on the 3−jet.

T) Transversality Condition: b(b − a) 6= 0; and

D) Discriminant Conditions:

D1)
a
b >

(

c
2b

)2
+ 2; or

D2) 1 < a
b <

(

c
2b

)2
+ 2, or a 6= 2b; or

D3)
a
b < 1.
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Classification of umbilic points on surfaces. Analytic and

Pictorial.

Darbouxian umbilic points. Classification depends on the 3−jet.

T) Transversality Condition: b(b − a) 6= 0; and

D) Discriminant Conditions:

D1)
a
b >

(

c
2b

)2
+ 2; or

D2) 1 < a
b <

(

c
2b

)2
+ 2, or a 6= 2b; or

D3)
a
b < 1.

Semi-Darbouxian umbilic points: Cod. 1 Bifurcations.

D12) cb(b − a) 6= 0 and,

or a
b =

(

c
2b

)2
+ 2

or a
b = 2.

D23) b = a 6= 0 and χ = cB − (C − A + 2k3)b 6= 0.

Notice that D23) depends on the 4−jet.
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Differential equations for principal lines. Gluing Element
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Differential equations for principal lines. Gluing Element

n = 2 (In classical notation, Singularities happen at Umbilic Points):

(Fg − Gf )dv2 + (Eg − eG )dudv + (Ef − eF )du2 = 0,

L = Fg − Gf , M = Eg − eG , N = Ef − eF .

Umbilic Points, where k1 = k2, occur at L = M = N = 0.
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Differential equations for principal lines. Gluing Element

n = 2 (In classical notation, Singularities happen at Umbilic Points):

(Fg − Gf )dv2 + (Eg − eG )dudv + (Ef − eF )du2 = 0,

L = Fg − Gf , M = Eg − eG , N = Ef − eF .

Umbilic Points, where k1 = k2, occur at L = M = N = 0.

n = 3: For later consideration, essential for today’s lecture. More
complicated system of IMPLICIT DIFFERENTIAL EQUATIONS.







(λ11 − kig11)du1 + (λ12 − kig12)du2 + (λ13 − kig13)du3 = 0
(λ12 − kig12)du1 + (λ22 − kig22)du2 + (λ23 − kig23)du3 = 0
(λ13 − kig13)du1 + (λ23 − kig23)du2 + (λ33 − kig33)du3 = 0

,

(2)
where ki (i = 1, 2, 3) are the principal curvatures, defined by the 3
roots of the cubic equation det(Λ − kG ) = 0.
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Umbilic Points on Surfaces of R
3
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Umbilic Points on Surfaces of R
3

Darbouxian Umbilic Points (Generic, structurally stable)

Figure: Darboux - Poincaré, 1881, Cω; Gutierrez-Sotomayor, 1982, C 4.
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Umbilic Points on Surfaces of R
3

Darbouxian Umbilic Points (Generic, structurally stable)

Figure: Darboux - Poincaré, 1881, Cω; Gutierrez-Sotomayor, 1982, C 4.

Umbilics of Codimension 1: Bifurcate Generically, one parameter.

Garcia, Gutiérrez, Sotomayor; A. Gullstrand, Ophtalmologist Nobel Laureate,
1904.
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Lie-Cartan vector field

The local configuration near umbilics can be explained in terms of the
phase portraits of the singularities, hyperbolic saddles and nodes in the
present Darbouxian case, of the Lie-Cartan vector field suspension, XF , of
the implicit differential equation F(u, v , p) = 0, where,

F(u, v , p) = Lp2 + Mp + N = 0, p =
dv

du
XF = (Fp, pFp,−(Fu + pFv ))

(3)

Similar for affine chart q = 1/p to capture behavior at p = ∞.

The integral curves to XF are tangent to F(u, v , p) = 0 and project onto
principal curvature lines.
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Darbouxian Umbilic points RESOLVED in terms of

resolution of hyperbolic singularities of vector fields

Figure: Artistic Illustration of surfaces over configurations D1 and D2. Case D3

more exact drawing. Attention: gluing at ∞.
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Umbilic point D1
12 bifurcation (emergence of nodal sector),

RESOLVED in terms of hyperbolic and saddle-node
singularities of vector fields.
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Umbilic point D23 RESOLVED in terms of semi-hyperbolic

singularities of vector fields defined on a VARIETY with
two Morse Critical Points.

Jorge Sotomayor (IME-USP) Partially Umbilic Points 17/08/2012 19 / 51



Bifurcation: Elimination - Splitting of umbilic points D2

and D3 at D23

Figure: Bifurcation: Elimination - Splitting of a pair of D2 of D3 from a D23.
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Umbilics of Codimension 2: classification depends on the

5-jet of h

. PICTORIAL OUTLINE

Pictures. Analysis after Lie - Cartan in [Garcia, Sotomayor], discussion below.
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Bifurcation diagrams of umbilics of codimension two,

[Ga,So]
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How to get free from the 3−dimensional restriction.

CONSIDER: Surfaces and Hypersurfaces in R
4.

Follow today the second path: links for references in my
webpage:

http://www.ime.usp.br/˜sotp/

Survey, 2008, São Paulo Journ. Math. Also in the arXiv.

Book, 2009, Brazilian Math. Colloquium.
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Principal curvature lines on hypersurfaces of R
n+1
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Principal curvature lines on hypersurfaces of R
n+1

For any oriented n-dimensional manifold M
n immersed in R

n+1 are
associated n, mutually orthogonal, one dimensional foliations with
singularities, called here principal foliations, whose leaves are the principal
curvature lines.
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Principal curvature lines on hypersurfaces of R
n+1

For any oriented n-dimensional manifold M
n immersed in R

n+1 are
associated n, mutually orthogonal, one dimensional foliations with
singularities, called here principal foliations, whose leaves are the principal
curvature lines.
These lines are the integral curves of the principal directions fields which
are defined by the directions where the normal curvature

kn(p, v) =
IIα
Iα

=

∑

λijduiduj
∑

gijduiduj
, α : M

n → R
n+1

of the immersed hypersurface is critical.
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Principal curvature lines on hypersurfaces of R
n+1

For any oriented n-dimensional manifold M
n immersed in R

n+1 are
associated n, mutually orthogonal, one dimensional foliations with
singularities, called here principal foliations, whose leaves are the principal
curvature lines.
These lines are the integral curves of the principal directions fields which
are defined by the directions where the normal curvature

kn(p, v) =
IIα
Iα

=

∑

λijduiduj
∑

gijduiduj
, α : M

n → R
n+1

of the immersed hypersurface is critical. The principal curvatures will be

denoted by k1 ≤ k2 ≤ . . . ≤ kn and the principal directions will be denoted
by {e1, e2, . . . , en}. These are non oriented lines.
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Differential equation of principal lines.
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Differential equation of principal lines.

n = 2 (In classical notation for FUNDAMENTAL FORMS.):

(Fg − Gf )dv2 + (Eg − eG )dudv + (Ef − eF )du2 = 0,

L = Fg − Gf , M = Eg − eG , N = Ef − eF .

Umbilic Points, where k1 = k2, occur at L = M = N = 0.

n = 3: More complicated system of IMPLICIT DIFFERENTIAL
EQUATIONS.







(λ11 − kig11)du1 + (λ12 − kig12)du2 + (λ13 − kig13)du3 = 0
(λ12 − kig12)du1 + (λ22 − kig22)du2 + (λ23 − kig23)du3 = 0
(λ13 − kig13)du1 + (λ23 − kig23)du2 + (λ33 − kig33)du3 = 0

,

(4)
where ki (i = 1, 2, 3) are the principal curvatures, defined by the 3
roots of the cubic equation det(Λ − kG ) = 0.

Jorge Sotomayor (IME-USP) Partially Umbilic Points 17/08/2012 28 / 51



III. Case n = 3: Principal curvature lines on hypersurfaces

of R
4.

Singularities:
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III. Case n = 3: Principal curvature lines on hypersurfaces

of R
4.

Singularities:

{

(Totally) Umbilic Points : k1(p) = k2(p) = k3(p)
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III. Case n = 3: Principal curvature lines on hypersurfaces

of R
4.

Singularities:

{

(Totally) Umbilic Points : k1(p) = k2(p) = k3(p)
Partially umbilic points : k1(p) = k2(p) 6= k3(p)
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III. Case n = 3: Principal curvature lines on hypersurfaces

of R
4.

Singularities:

{

(Totally) Umbilic Points : k1(p) = k2(p) = k3(p)
Partially umbilic points : k1(p) = k2(p) 6= k3(p)

Similar for k1(p) 6= k2(p) = k3(p).
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III. Case n = 3: Principal curvature lines on hypersurfaces

of R
4.

Singularities:

{

(Totally) Umbilic Points : k1(p) = k2(p) = k3(p)
Partially umbilic points : k1(p) = k2(p) 6= k3(p)

Similar for k1(p) 6= k2(p) = k3(p).

The goal is to describe the local behavior of principal foliations near
partially umbilic points.
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III. Case n = 3: Principal curvature lines on hypersurfaces

of R
4.

Singularities:

{

(Totally) Umbilic Points : k1(p) = k2(p) = k3(p)
Partially umbilic points : k1(p) = k2(p) 6= k3(p)

Similar for k1(p) 6= k2(p) = k3(p).

The goal is to describe the local behavior of principal foliations near
partially umbilic points.

In fact: Generically (in the space of immersions) the set of (totally)
umbilic points is empty (Cod 5) and the set of partially umbilic points
(Cod. 2) is the union of regular curves on M.
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III. Case n = 3: Principal curvature lines on hypersurfaces

of R
4.

Singularities:

{

(Totally) Umbilic Points : k1(p) = k2(p) = k3(p)
Partially umbilic points : k1(p) = k2(p) 6= k3(p)

Similar for k1(p) 6= k2(p) = k3(p).

The goal is to describe the local behavior of principal foliations near
partially umbilic points.

In fact: Generically (in the space of immersions) the set of (totally)
umbilic points is empty (Cod 5) and the set of partially umbilic points
(Cod. 2) is the union of regular curves on M.

REGULAR POINTS: k1(p) < k2(p) < k3(p).
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Partially umbilic curve and contact with the umbilic plane
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Partially umbilic curve and contact with the umbilic plane
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Plane field defined by a regular principal direction e3 near a

partially umbilic point

Consider the plane passing through q ∈ M having the principal direction
e3(q) as the normal vector.

Π(q) = {(du1, du2, du3);
〈

(du1, du2, du3),G · (e3(q))T
〉

= 0}, (5)

where G = [gij ]3×3 is the first fundamental form.

Therefore the plane field Π is defined by the differential one form
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Plane field defined by a regular principal direction e3 near a

partially umbilic point

Consider the plane passing through q ∈ M having the principal direction
e3(q) as the normal vector.

Π(q) = {(du1, du2, du3);
〈

(du1, du2, du3),G · (e3(q))T
〉

= 0}, (5)

where G = [gij ]3×3 is the first fundamental form.

Therefore the plane field Π is defined by the differential one form

du3 = U(u1, u2, u3)du1 + V(u1, u2, u3)du2. (6)
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Plane field defined by a regular principal direction e3 near a

partially umbilic point

Consider the plane passing through q ∈ M having the principal direction
e3(q) as the normal vector.

Π(q) = {(du1, du2, du3);
〈

(du1, du2, du3),G · (e3(q))T
〉

= 0}, (5)

where G = [gij ]3×3 is the first fundamental form.

Therefore the plane field Π is defined by the differential one form

du3 = U(u1, u2, u3)du1 + V(u1, u2, u3)du2. (6)

The plane field Π is in general not integrable (Frobenious) and so the
situation is strictly three-dimensional.
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The principal directions e1(q) and e2(q) associated to k1(q) and k2(q)
belong to the plane Π(q).
Let

Ir (du1, du2) = Iα

∣

∣

∣

du3=U(u1,u2,u3)du1+V(u1,u2,u3)du2

= Erdu2
1 + 2Frdu1du2 + Grdu2

2 ,

IIr (du1, du2) = IIα

∣

∣

∣

du3=U(u1,u2,u3)du1+V(u1,u2,u3)du2

= erdu2
1 + 2frdu1du2 + grdu2

2 ,
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The principal directions e1(q) and e2(q) associated to k1(q) and k2(q)
belong to the plane Π(q).
Let

Ir (du1, du2) = Iα

∣

∣

∣

du3=U(u1,u2,u3)du1+V(u1,u2,u3)du2

= Erdu2
1 + 2Frdu1du2 + Grdu2

2 ,

IIr (du1, du2) = IIα

∣

∣

∣

du3=U(u1,u2,u3)du1+V(u1,u2,u3)du2

= erdu2
1 + 2frdu1du2 + grdu2

2 ,

We have that k r
n(q, ·) =

IIr
Ir

(q, ·) where Ir (q) and IIr (q) are the first and

second fundamental forms of α restricted to the plane Π(q).
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The principal directions e1(q) and e2(q) associated to k1(q) and k2(q)
belong to the plane Π(q).
Let

Ir (du1, du2) = Iα

∣

∣

∣

du3=U(u1,u2,u3)du1+V(u1,u2,u3)du2

= Erdu2
1 + 2Frdu1du2 + Grdu2

2 ,

IIr (du1, du2) = IIα

∣

∣

∣

du3=U(u1,u2,u3)du1+V(u1,u2,u3)du2

= erdu2
1 + 2frdu1du2 + grdu2

2 ,

We have that k r
n(q, ·) =

IIr
Ir

(q, ·) where Ir (q) and IIr (q) are the first and

second fundamental forms of α restricted to the plane Π(q).

Let P =
du2

du1
. Therefore the directions e1(q) and e2(q) are defined by

Lr (u1, u2, u3)P
2 + Mr (u1, u2, u3)P + Nr (u1, u2, u3) = 0, (7)

Lr = Frgr − frGr , Mr = Ergr − erGr , Nr = Er fr − erFr
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Let L(u1, u2, u3,P) = Lr (u1, u2, u3)P
2 + Mr (u1, u2, u3)P + Nr (u1, u2, u3).

The equation
L(u1, u2, u3;P) = 0 (8)

defines a hypersurface (variety) in the projective tangent bundle PM
3,

called de Lie-Cartan hypersurface, and under generic conditions
b(b − a) 6= 0 is regular.
The Lie-Cartan vector field suspension is given by:
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Let L(u1, u2, u3,P) = Lr (u1, u2, u3)P
2 + Mr (u1, u2, u3)P + Nr (u1, u2, u3).

The equation
L(u1, u2, u3;P) = 0 (8)

defines a hypersurface (variety) in the projective tangent bundle PM
3,

called de Lie-Cartan hypersurface, and under generic conditions
b(b − a) 6= 0 is regular.
The Lie-Cartan vector field suspension is given by:

X :=















u̇1 = LP

u̇2 = PLP

u̇3 = (U + VP)LP

Ṗ = − (Lu1 + PLu2 + Lu3 (U + VP))

, (9)
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A Monge Chart near a partially umbilic point
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A Monge Chart near a partially umbilic point

α(u1, u2, u3) = (u1, u2, u3, h(u1, u2, u3)) where
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A Monge Chart near a partially umbilic point

α(u1, u2, u3) = (u1, u2, u3, h(u1, u2, u3)) where

h(u1, u2, u3) = k
2 (u2

1 + u2
2) + k3

2 u2
3 + a

6u3
1 + b

2u1u
2
2 + 0u2

1u2 + c
6u3

2

+u3[
q201
2 u2

1 + q111u1u2 + q021
2 u2

2] + q102
2 u1u

2
3 + q003

6 u3
3

+q012

2 u2u
2
3 + A

24u4
1 + B

6 u3
1u2 + C

4 u2
1u

2
2 + D

6 u1u
3
2

+ E
24u4

2 + Q004
24 u4

3 + Q013
6 u3

3u2 + Q103
6 u3

3u1

+Q022
4 u2

2u
2
3 + Q202

4 u2
1u

2
3 + Q112

2 u2
3u1u2 + Q031

6 u3u
3
2

+Q301
6 u3

1u3 + Q121
2 u3u

2
2u1 + Q211

2 u3u2u
2
1 + O(5)

(10)
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Parametrization of a partially umbilic line.

It is defined by Lr = 0, Mr = 0.
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Parametrization of a partially umbilic line.

It is defined by Lr = 0, Mr = 0. Under Darbouxian transversality
condition, the partially umbilic set can be parameterized by

u1 = c1(u3), u2 = c2(u3) defined byLr (u1, u2, u3) = Mr (u1, u2, u3) = 0
(11)

where,

c ′(0) =

[

(−cq111 + q021b − q201b)

b (−b + a)
,−

q111

b
, 1

]

.
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Partially umbilic curve: contact with the plane Π(q)
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Partially umbilic curve: contact with the plane Π(q)
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Generic Partially Umbilic Points.
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Generic Partially Umbilic Points.

Darbouxian partially umbilic point.

T) b(b − a) 6= 0; and

D1)
a
b >

(

c
2b

)2
+ 2; or

D2) 1 < a
b <

(

c
2b

)2
+ 2, a 6= 2b; or

D3)
a
b < 1.
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Generic Partially Umbilic Points.

Darbouxian partially umbilic point.

T) b(b − a) 6= 0; and

D1)
a
b >

(

c
2b

)2
+ 2; or

D2) 1 < a
b <

(

c
2b

)2
+ 2, a 6= 2b; or

D3)
a
b < 1.

Semi-Darbouxian partially umbilic point.

D12) cb(b − a) 6= 0 and,

or a
b =

(

c
2b

)2
+ 2 e χ1 6= 0,

or a
b = 2, and χ2 6= 0.

D23) b = a 6= 0 and

χ = cB − (C − A + 2k3)b +
−2q2

111b + 2q2
201b + 2q201q111c

b(k − k3)
6= 0.
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Resolution of Partially umbilic points.
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s
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s
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Resolution of Partially umbilic points.

Figure: D1, D2, D3
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Resolution of Partially umbilic points in terms of normally

hyperbolic manifolds.
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Principal Configurations near a curve of Darbouxian

Partially Umbilic Points, [Ga]
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Curve of Darbouxian Partially Umbilic Points.

c

D1

c c

D2
D3
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Generic Transitions of Darbouxian Partially Umbilic Points

along a regular partially umbilic curve, [Garcia], 1989.

c

} D1

D2}

D23D12

Darboux for hypersurfaces of R
4. Proofs, 2012, with Lie - Cartan methods.

REMARK on Regularity and Criticality: Lr (u1, u2, u3) = 0, Mr (u1, u2, u3) = 0.
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OUTLINE OF THE ANALYSIS OF SEMI-DARBOUXIAN

POINT OF TYPE D12: cb(b − a) 6= 0, a
b = 2, and χ2 6= 0
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OUTLINE OF THE ANALYSIS OF SEMI-DARBOUXIAN

POINT OF TYPE D12: cb(b − a) 6= 0, a
b = 2, and χ2 6= 0

The Lie-Cartan vector fields
X = (LP ,PLP , (U + VP)LP ,−(Lu1 +PLu2 +Lu3 (U + VP))), is given by
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OUTLINE OF THE ANALYSIS OF SEMI-DARBOUXIAN

POINT OF TYPE D12: cb(b − a) 6= 0, a
b = 2, and χ2 6= 0

The Lie-Cartan vector fields
X = (LP ,PLP , (U + VP)LP ,−(Lu1 +PLu2 +Lu3 (U + VP))), is given by

u̇1 = (−2bu2 − 2q111u3)P + (−b)u1 + cu2 + (−q201 + q021)u3 + O(2)
u̇2 = PX1

u̇3 =
((

q111u1+q021v+q012u3
k−1 + O(2)

)

P + q201u1+q111u2+q102u3
k−1 + O(2)

)

X1

Ṗ = A3(u1, u2, u3)P
3 + A2(u1, u2, u3)P

2 + A1(u1, u2, u3)P + A0(u1, u2, u3)
(12)

onde
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A3(u1, u2, u3) = b +
(

C − k3 +
q2

111+q201q021

k−1

)

u1 +
(

D + 3q111q021
k−1

)

u2+

+
(

Q121 + 2q111q012+q102q021

k−1

)

u3 + O(2)

A2(u1, u2, u3) = c +
(

−D + 2B + 6q111q201−3q111q021
k−1

)

u1+

+
(

−E + k3 + 2C +
4q2

111−3q2
021+2q201q021

k−1

)

u2+

+
(

−Q031 + 2Q211(2q201q012+4q102q111−3q012q021)
k−1

)

u3 + O(2)

A1(u1, u2, u3) =
(

−2C + A − k3 +
−2q201q021−4q2

111+3q2
201

k−1

)

u1+

+
(

−2D + B + 3q111q201−6q111q021

k−1

)

u2+

+
(

−2Q121 + Q301 + 3q102q201−2q102q021−4q111q012

k−1

)

u3 + O(2)

A0(u1, u2, u3) =
(

−B − 3q111q201
k−1

)

u1 +
(

−C + k3 − 2q111
2+q201q021
k−1

)

u2+

+
(

−Q211 −
q201q012+2q102q111

k−1

)

u3 + O(2)
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The singular points of X are given by







{

Lr (u1, u2, u3) = 0,
Mr (u1, u2, u3) = 0,

(Partially Umbilic Points)

A3(u1, u2, u3)P
3 + A2(u1, u2, u3)P

2 + A1(u1, u2, u3)P + A0(u1, u2, u3) = 0
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The singular points of X are given by







{

Lr (u1, u2, u3) = 0,
Mr (u1, u2, u3) = 0,

(Partially Umbilic Points)

A3(u1, u2, u3)P
3 + A2(u1, u2, u3)P

2 + A1(u1, u2, u3)P + A0(u1, u2, u3) = 0

b(b − a) 6= 0 ⇒ we can write u1 = u1(u3) and u2 = u2(u3) in
{

Lr (u1, u2, u3) = 0,
Mr (u1, u2, u3) = 0,
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The singular points of X are given by







{

Lr (u1, u2, u3) = 0,
Mr (u1, u2, u3) = 0,

(Partially Umbilic Points)

A3(u1, u2, u3)P
3 + A2(u1, u2, u3)P

2 + A1(u1, u2, u3)P + A0(u1, u2, u3) = 0

b(b − a) 6= 0 ⇒ we can write u1 = u1(u3) and u2 = u2(u3) in
{

Lr (u1, u2, u3) = 0,
Mr (u1, u2, u3) = 0,

The discriminant of
A3(u1(u3), u2(u3), u3)P

3 + A2(A3(u1(u3), u2(u3), u3)P
2 +

A1(A3(u1(u3), u2(u3), u3)P + A0(A3(u1(u3), u2(u3), u3) = 0 is given
by

D(u3) = χ2u3 + O(2),
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Figure: Equilibrium Curves
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D12
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Figure: Lie - Cartan Resolution of D12
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Partially Umbilic Points of codimension 1: D1
1 , D1

2 , D1
3 ,

D1
13, D1

1h,p, D1
1h,n, D1

p , D1
c . There are Eight Generic

Types, studied in the Thesis of da Silva, in preparation.
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Recap Through Some Historical Landmarks
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Recap Through Some Historical Landmarks

G. Monge ( 1796), definition of principal lines motivated by
applications in the transport problem.

C. Dupin ( 1818), triply orthogonal system of surfaces.

G. Darboux (1896), description of lines of curvature near generic
umbilics on analytic surfaces

C. Caratheodory (∼ 1920), question about the minimal number of
umbilics on compact and convex surfaces (still an open problem?).

C. Gutierrez and J. Sotomayor ( 1982 and after ), on qualitative
theory of principal curvature lines: stability, bifurcations,....

R. Garcia (1989) IMPA, Thesis on case n = 3, and after....

Book Garcia - Sotomayor 2009, Survey in ArXiv.
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