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Introduction

The main goal of these lectures is to give a brief introduction to contact geometry
of Monge-Ampère equations. Such equations form a subclass of the class of
second order partial differential equations.

This subclass is rather wide and contains all linear and quasi-linear equa-
tions. On the other hand, it is a minimal class that contains quasilinear equa-
tions and that is closed with respect to contact transformations.

This fact was known to Sophus Lie, who applied contact geometry meth-
ods to this kind of equations. S. Lie put the classification problem for Monge-
Ampère equations with respect to contact pseudogroup. In particular, he put
the problem of equivalence of Monge-Ampère equations to the quasilinear and
linear forms.

A notion «Monge-Ampère equations» was introduced by Gaston Darboux
in his lectures on general theory of surfaces [2, 3, 4]. Equations of the form

Avxx + 2Bvxy + Cvyy +D(vxxvyy − v2xy) + E = 0

he calls Monge-Ampère equations.
Here A,B,C,D and E are functions on independent variables x, y, un-

known function v = v(x, y), and its first derivatives vx, vy.
In 1978 Valentin Lychagin noted that the classical Monge-Ampère equa-

tions and there multi-dimensional analogues admit effective description in terms
of differential forms on the space of 1-jets of smooth functions [23]. His idea
was fruitful, and it generated a new approach to Monge-Ampère equations.

The lectures has the following structure.
In the first lecture we give an introducion to geometry of jets space. We

define jets of scalar functions on a smooth manifold, introduce the Cartan dis-
tribution, contact transformations and contact vector fields.



4 Contents

In the second lecture we consider differential equations as submanifolds
of jets manifold. We describe main ideas of Valentin Lychagin and give a short
introduction to geometry of the Monge-Ampère equations. Here we follow the
papers [23, 24] and the books [18, 25].

The last lecture is devoted to classification of Monge-Ampère equations
with two independent variables. Particularly we consider a problem of lineariza-
tion of Monge-Ampère equations with respect to contact transformations.

Details can be found in [18] and in the original papers (see the bibliogra-
phy).



Lecture 1

Geometry of jet spaces

1.1 Jets

Let M be an n-dimensional smooth manifold and let C∞(M) be the algebra of
smooth functions on M . Let a ∈ M be a point.

A set of all smooth functions on M that vanish at the point a we denote
by µa, i.e.

µa
def
= {f ∈ C∞(M) | f(a) = 0}.

This set is an ideal of the algebra C∞(M). Let µk
a be the k-th degree of

this ideal:

µk
a =

{∑ k∏
i=1

fi

∣∣∣∣∣ fi ∈ µa

}
In the other words, µk

a consists of functions that have zero partial derivatives of
order < k at the point a:

µk
a =

{
f ∈ C∞(M)

∣∣∣∣∣ ∂|σ|f

∂xσ
(a) = 0, 0 ≤ |σ| < k − 1

}
,

where x = (x1, . . . , xn) are local coordinates on M , σ = (σ1, . . . , σn) is a multi-
index, |σ| = σ1 + · · ·+ σn, and

∂|σ|f

∂xσ
=

∂|σ|f

∂xσ1
1 . . . ∂xσn

n
.

Consider the quotient algebra

Jk
aM

def
= C∞(M)/µk+1

a .

Definition 1.1. Elements of Jk
aM are called k-jets of functions at the point a.
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Figure 1.1: 1-jets of functions

The k-jet of a function f ∈ C∞(M) at a point a we denote by [f ]ka, i.e.,

[f ]ka = f modµk+1
a .

Two functions f and g define the same k-jet at a point a if and only if
there corresponding partial derivatives of order ≤ k at the point a coincide:

f(a) = g(a),
∂|σ|f

∂xσ
(a) =

∂|σ|g

∂xσ
(a)

for |σ| ≤ k. For example (see Fig. 1.1),

[x]i0 = [sin x]i0

for i = 0, 1, 2, but
[x]30 ̸= [sinx]30.

The k-jet of the function (x− a)m at the point a is zero if k < m:

[(x− a)m]ka = [0]ka. (1.1)

The polynomial

f(a) +
∑
|σ|≤k

1

σ!

∂f |σ|

∂xσ
(a)(x− a)k
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we shall consider as a representative of k-jet [f ]ka in the given coordinates.
Let us introduce a structure of a vector space on Jk

aM . Define a summa
of two jets and a product a jet by a real number by the following formulas:

[f ]ka + [g]ka
def
= [f + g]ka, λ[f ]ka

def
= [λf ]ka.

Theorem 1.1. The k-jets

[1]ka, [x− a]ka, . . . ,
1

σ!
[(x− a)σ]ka (|σ| ≤ k).

form a basis of the vector space Jk
aM .

Proof. Due to the Taylor formula, we have:

f(x) = f(a) +
∑
|σ|≤k

1

σ!

∂f |σ|

∂xσ
(a)(x− a)k + o((x− a)k).

and

[f ]ka = f(a)[1]ka +
∑
|σ|≤k

∂f |σ|

∂xσ
(a)

[(x− a)σ]ka
σ!

.

Exercise 1. Prove that

dim Jk
aM =

(
k + n

k

)
.

Definition 1.2. The union of all k-jets, i.e.,

J1M
def
=
∪
a∈M

J1
aM

is called a space of k-jets of functions on M .

On this space we define a structure of smooth manifold with local coor-
dinates

x1, . . . , xn, u, pσ, (|σ| ≤ k)

where

xi([f ]
k
a) = xi(a), u([f ]ka) = f(a), pσ([f ]

k
a) =

∂|σ|f

∂xσ
(a) (|σ| ≤ k).
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Figure 1.2: The map [f ]k

Corollary 1.

dim JkM = n+

(
k + n

k

)
.

With functions f ∈ C∞(M) we associate maps

[f ]k : M → JkM

where
[f ]k(a) = [f ]ka.

Definition 1.3. The map [f ]k is called the k-prolongation of the function f .
The image of M is a smooth submanifold

Lk
f = [f ]k(M) ⊂ JkM

which we call k-graph of the function f (see Fig. 1.2).

Exercise 2. Prove that the bundles

πk : J
kM → M, πk : [f ]

k
a 7→ a

are a vector bundles.
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1.2 Cartan distribution

Consider the following problem: describe a class of all n-dimensional submani-
folds of JkM that are k-graphs of functions.

Note that if L ⊂ JkM is a k-graph of a function, then the projection
π : L → M is a diffeomophism. This means that local coordinates on M can
be viewed as local coordinates on L.

On the other hand, a submanifold

L = {u = f(x), pσ = gσ(x)} ⊂ JkM,

is a k-graph of a function if and only if

gσ =
∂|σ|f

∂xσ
, |σ| ≤ k.

We shall describe such submanifolds in a coordinate-free form. For this
goal let’s introduce the so-called Cartan distribution.

At first,recall some facts of distributions theory.
A k-dimensional distribution P on a smooth manifold N is a «smooth»

field
P : a ∈ N 7→ P (a) ⊂ TaN

of k-dimensional subspaces of the tangent spaces.
There are two main ways to say that P is a smooth field, and to define a

distribution: by vector fields or by differential 1-forms.

By vector fields. Let X1, . . . , Xk be such vector fields on N that P (a) is
span by the tangent vectors X1,a, . . . , Xk,a:

P (a) = Span(X1,a, . . . , Xk,a).

In this case we write
P = ⟨X1, . . . , Xk⟩.

We say that a vector field X belongs to P if Xa ∈ P (a) for any point
a ∈ N . Then smoothness of P means that there are local bases for P consisting
of vector fields that belong to P .
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Figure 1.3: One-dimensional distribution on Mobius strip

We denote by D(P ) the set of all vector fields that belong to P .

By differential 1-forms. Suppose that there are n − k differential 1-forms
ω1, . . . , ωn−k (n = dimN) such that a subspace P (a) is the intersection of
kernels of these forms:

P (a) =
n−k∩
i=1

kerωi,a.

In this case we write

P = ⟨ω1, . . . , ωn−k⟩.

The smoothness of P means that locally the distribution can be defined
by a set of differential 1-forms.

Remark 1. For general smooth manifolds distributions can be defined by vector
fields or by differential forms only locally. For example, the one-dimensional
distribution P on the Mobius strip (see Fig. 1.3) cannot be defined by a vector
field globally: each vector field which belongs to this distributions has a singular
point.
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A submanifold L ⊂ N is said to be integral for the distribution P if

TaL ⊂ P (a)

for any point a ∈ L.
Return to the Cartan distribution.
Let θ ∈ JkM and a = πk(θ). Then the subspace

Ck(θ) = Span
∪

f∈C∞(M),[f ]ka=θ

TθL
k
f

is called the Cartan subspace.
The distribution

Ck : JkM ∋ θ 7→ Ck(θ) ⊂ TθJ
kM

is called the Cartan distribution.
By the construction, k-graphs of functions are integral manifolds of the

Cartan distribution.
Note that not any integral manifold L ⊂ JkM of the Cartan distribution

is a k-graph of a function. This is true if and only the projection π : L → M is
a diffeomophism.

Theorem 1.2. An n-dimensional smooth manifold L is a k-graph of a smooth
function on M if and only if

• L is an integral manifold of the Cartan distribution,

• the projection π : L → M is a diffeomophism.

Example 1. Consider a case when M = R. Then J1R = R3 and coordinates
on J1R are such functins x, u, p, that

x([f ]1a) = a, u([f ]1a) = f(a), p([f ]1a) = f ′(a).

Then the curve

L1
f = {u = f(x), p = f ′(x)}

is a 1-graph of the function f .



12 Lecture 1. Geometry of jet spaces

Figure 1.4: Cartan subspace for n = 1

A tangent line TθL
1
f at a point θ = [f ]1a is generated by the vector

∂

∂x

∣∣∣∣
θ

+ f ′(a)
∂

∂u

∣∣∣∣
θ

+ f ′′(a)
∂

∂p

∣∣∣∣
θ

All possible tangent lines TθL
1
f are lines fin the plane

{du− pθdx = 0} ⊂ Tθ(J
1R) (1.2)

without the vertical line (see picture 1.4). Here a, uθ, pθ are coordinates of the
point θ. Therefore they span is plane (1.2).

So, in this case the Cartan space C(θ) is a plane which is generated by
the vectors

∂

∂x

∣∣∣∣
θ

+ pθ
∂

∂u

∣∣∣∣
θ

,
∂

∂p

∣∣∣∣
θ

.

Therefore, the Cartan distribution is generated by the corresponding vec-
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tor fields:
∂

∂x
+ p

∂

∂u
,

∂

∂p

or, equivalently, by the differential 1-form

ω0 = du− pdx.

This form is called Cartan form.

Figure 1.5: Cartan distribution for n = 1

1.3 Contact structure on J1M

Consider the case when M = Rn. Then J1Rn = R2n+1 and coordinates on J1R
are

x1, . . . , u, p1, . . . , pn

where
xi([f ]

1
a) = ai, u([f ]1a) = f(a), pi([f ]

1
a) =

∂f

∂xi
(a).

The Cartan distribution is generated by the vector fields

∂

∂xi
+ pi

∂

∂u
,

∂

∂pi
(i = 1, . . . , n),
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or by the differential 1-form

ω0 = du− p1dx1 − · · · − pndxn. (1.3)

Recall that a contact structure on odd-dimensional smooth manifold is a
maximal non-integrable distribution of codimensional 1. This means the follow-
ing.

Let P = ⟨ω⟩ be a 2n-dimensional distribution on 2n + 1-dimensional
smooth manifold N . This distribution is called a contact structure if ω∧(dω)n ̸=
0.

The following theorem gives a canonical representation for contact struc-
tures.

Theorem 1.3 (G. Darboux). Let P = ⟨ω⟩ be a contact structure. There exist
local coordinates x1, . . . , xn, y1, . . . , yn, z on N such that

ω = dz − y1dx1 − · · · − yndx1.

Since (1.3), we have

dω0 = dq1 ∧ dp1 + · · ·+ dqn ∧ dpn. (1.4)

Therefore,
ω0 ∧ (dω0)

n ̸= 0

and we see that the Cartan distribution C defines the contact structure on J1M .
Let θ be a point of J1M . A restriction of dω0 on the Cartan space C(θ)

defines a symplectic structure. We denote it by Ωθ, i.e.,

Ωθ = dω0|C(θ) .

1.4 Contact transformations

Definition 1.4. A diffeomophism φ : J1M → J1M is called contact if it
preserves the Cartan distribution.

In other words, contact diffeomorphisms are symmetries of the Cartan
distribution.
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This means that
φ∗(ω0) = λφω0

for a smooth function λφ on J1M .
The following transformations are contact:

1. Translations:
(x, u, p) 7−→ (x+ α, u+ β, p),

where α, β are constant.

2. Scale transformations

(x, u, p) 7−→ (eαx, eβu, e(β−α)p).

3. The Legendre transformation:

(x, u, p) 7−→ (p, u− xp,−x)

4. The Euler (or partial Legendre’s) transformation:

(x1, x2, u, p1, p2) 7−→ (p1, x2, u− p1x1,−x1, p2)

5. Shifts:
(x, u, p) 7→

(
x, u+ h, p+

∂h

∂x

)
,

where h = h(x).

Important class of contact transformations can be obtained as prolonga-
tions of transformations of the space J0M .

Diffeomophism of the 0-jets space are called point transformations.
Let

φ : (x, u) 7→ (X(x, u), U(x, u))

be a point transformation.

Definition 1.5. The transformation

φ(1) : (x, u, p) 7→ (X(x, u), U(x, u), P (x, u, p))

is called the first prolongation or the prolongation of the transformation φ to
the space J1M if it preserves the Cartan distribution.
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Exercise 3. Prove that for the first prolongation

P =

dY

dx
dX

dx

,

where
d

dx
=

∂

∂x
+ p

∂

∂u
.

1.5 Contact vector fields

Infinitesimal analogies of contact transformations are contact vector fields.
Let X be a vector field on J1M and let {φt} be a local translation group

of X.

Definition 1.6. The vector field X is called contact if its translation group
consists of contact transformations, i.e.

φ∗
t (ω0) = λtω0 (1.5)

for some function λt on J1M .

After differentiating both parts of (1.5) by t at t = 0, we get:

d

dt

∣∣∣∣
t=0

φ∗
t (ω0) =

dλ

dt

∣∣∣∣
t=0

ω0. (1.6)

The left part of the equation is the Lie derivative LX(ω0) of the Cartan form
by the vector field X. Multiplying both parts of the last equation by the form
ω0 we get:

LX(ω0) ∧ ω0 = 0. (1.7)

Find a coordinate representation of contact vector fields. For simplify our
calculations we suppose that n = 1. Let x, u, p be coordinates on J1M .

Let
X = a

∂

∂x
+ b

∂

∂u
+ c

∂

∂p

be a contact vector field. Here a, b, c are smooth functions on J1M . Using the
formula

LX = d ◦ ιX + ιX ◦ d,
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we get
LX(ω0) = db− cdx− pda.

Formula (1.7) gives two differential equations on the components of X :

p
∂a

∂p
− ∂b

∂p
= 0,

∂b

∂x
− p

∂a

∂x
− c+ p

(
∂b

∂u
− p

∂a

∂u

)
= 0.

Let us put
f = b− pa.

Then
a = −∂f

∂p
, b = f − p

∂f

∂p
, c =

∂f

∂x
+ p

∂f

∂u
and any contact vector field determines by a smooth function f and has the
following form:

Xf = −∂f

∂p

∂

∂x
+

(
f − p

∂f

∂p

)
∂

∂u
+

(
∂f

∂x
+ p

∂f

∂u

)
∂

∂p
.

Note that
ω0(Xf) = f.

For arbitrary n a contact vector field has the form

Xf = −
n∑

i=1

∂f

∂pi

∂

∂xi
+

(
f −

n∑
i=1

pi
∂f

∂pi

)
∂

∂u
+

n∑
i=1

(
∂f

∂xi
+ pi

∂f

∂u

)
∂

∂pi

for some function f .

1.6 Lie transformations

Lie transformations are generalization of contact transformations.

Definition 1.7. A diffeomophism φ : JkM → JkM is called a Lie transfor-
mation if it preserves the Cartan distribution Ck.

For k = 1 Lie transformations are contact ones.
Each Lie transformation on JkM can be prolonged to the space Jk+1M .

Theorem 1.4. Any Lie transformation on JkM is is a (k−1)-th prolongation
of a contact transformation.



Lecture 2

Differential equations

2.1 Multivalued solutions

Consider a scalar k-th order differential equation on a smooth manifold M

F

(
x, v,

∂|σ|v

∂xσ

)
= 0, |σ| ≤ k. (2.1)

This equation can be viewed as a hypersurface

E = {F (x, u, pσ) = 0} ⊂ JkM

in the space of k-jets. This hypersurface we call an equation too.

Theorem 2.1. A function v = h(x) is a solution of equation (2.1) if and only
if its k-graph lies on the hypersurface E .

Proof. A function v = h(x) is a solution of (2.1) if and only if

F

(
x, h(x),

∂|σ|h(x)

∂xσ

)
≡ 0.

This means that Lk
h ⊂ E .

Definition 2.1. An n-dimensional integral manifold L of the Cartan distribu-
tion is called a multivalued solution of equation E if L ⊂ E .

Example 2. The ordinary differential equation

(y′)2 = x (2.2)

generates the following hypersurface in J1R:

E = {p2 − x = 0}.

18
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Figure 2.1: Equation p2 = x and its multivalued solution

The curve
L =

{
x = t2, u =

2

3
t3, p = t

}
(see Fig. 2.2) is a multivalued solution of the equation.

Exercise 4. Construct multivalued solutions of the following equation:

(y′)3 − 3y′ − y + 1 = 0.

Example 3. The Lissajou figure

u = cos(at), x = sin(bt)

corresponds to a multivalued solution of the differential equation

(1− x2)y′′ + xy′ + λy = 0

with λ = a2/b2.

Example 4. Spheres with radius 1 in the space R3(x, y, u) are projections of
multivalued solutions of the equation

vxxvyy − v2xy
(1 + v2x + v2y)

2
= 1. (2.3)

into J0R2.
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Figure 2.2: The Lissajou figure

2.2 Lychagin’s approach to Monge-Ampère equations

Let M be an n-dimensional smooth manifold and let J1M be the manifold of
1-jets of smooth functions on M .

The manifold J1M is equipped with Cartan’s distribution

C : a ∈ J1M 7→ C(a) ⊂ Ta(J
1M)

given by the differential 1-form ω0.
In the canonical local coordinates on J1M the Cartan form

ω0 = du− p1dx1 − · · · − pndxn.

A main idea of V. Lychagin is the following [23].
With any differential n-form ω on J1M we can associate a differential

operator
∆ω : C∞(M) → Ωn(M),

which acts by the following way:

∆ω(v) = ω|L1
v
.
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Here L1
v is the 1-graph of the function v.

This construction does not cover all nonlinear second order differential
operators, but only a certain subclass of them.

Example 5. Let
ω = 3p2dp− dx (2.4)

be the differential 1-form on J1(R). The corresponding operator ∆ω acts as

∆ω(v) =
(
3(v′)2v′′ − 1

)
dx. (2.5)

Indeed,

∆ω(v) = (3p2dp− dx)|j1(v)(M) = 3(v′)2d (v′)− dx =
(
3(v′)2v′′ − 1

)
dx.

Example 6. The differential 2-form

ω = dp1 ∧ dp2

on J1R2 corresponds to operator

∆ω(v) = d (vx1
) ∧ d (vx2

)

= (vx1x1
dx1 + vx1x2

dx2) ∧ (vx2x1
dx1 + vx2x2

dx2)

=
(
vx1x1

vx2x2
− v2x1x2

)
dx1 ∧ dx2

= (detHess v) dx1 ∧ dx2.

where

Hess v = det

∥∥∥∥∥ vx1x1
vx1x2

vx1x2
vx2x2

∥∥∥∥∥
is the Hessian of the function v.

Thus,
∆ω(v) = (Hess v) dx1 ∧ dx2. (2.6)

Example 7. The differential 3-form

ω = dx1 ∧ dp1 ∧ dp3 (2.7)

on J1R3 produces the following differential operator :

∆ω(v) = dx1 ∧ d (vx1
) ∧ d (vx3

) = (vx1x2
vx3x3

− vx1x3
vx2x3

) dx1 ∧ dx2 ∧ dx3.
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Example 8. The differential 2-form

ω = dp1 ∧ dx2 − dp2 ∧ dx1

on J1R2 represents the 2-dimensional Laplace operator

∆ω(v) = (vx1x1
+ vx2x2

) dx1 ∧ dx2.

The constructed operator ∆ω and the equation

Eω = {∆ω(v) = 0} ⊂ J2M

are called the Monge-Ampère operator and the Monge-Ampère equation, re-
spectively.

The following observation justifies this definition: being written in local
canonical contact coordinates on J1M , the operators ∆ω have the same type of
nonlinearity as the Monge-Ampère operators. Namely, the nonlinearity involves
the determinant of the Hesse matrix and its minors. For instance, in the case
n = 2 we get classical Monge-Ampère equations

Avxx + 2Bvxy + Cvyy +D(vxxvyy − v2xy) + E = 0. (2.8)

An advantage of this approach is the reduction of the order of the jet space:
we use the simpler space J1M instead of the space J2M where Monge-Ampère
equations should be ad hoc as second-order partial differential equations [29].

The two next examples show that the constructed map «differential n-
forms» → «differential operators» is not a 1-to-1 map: it has a huge kernel.

Example 9. Two differential 2-forms

ω = dx1 ∧ du and ϖ = p2dx1 ∧ dx2

on J1R2 generate the same operator:

∆ω(v) = dx1 ∧ (vx1
dx1 + vx2

dx2) = vx2
dx1 ∧ dx2,

∆ϖ(v) = vx2
dx1 ∧ dx2.

Example 10. Any differential n-form

ω = ω0 ∧ α+ dω0 ∧ β (2.9)

on J1M , where α ∈ Ωn−1
(
J1M

)
, β ∈ Ωn−2

(
J1M

)
and ω0 is the Cartan form,

gives the zero operator.
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This kernel consists of differential forms that vanish on any integral man-
ifold of the Cartan distribution. Due to Lepage’s theorem [24], all such forms
have form (2.9). They generate a graded ideal

I∗ = ⊕s≥0I
s,

Is ⊂ Ωs(J1M) of the exterior algebra Ω∗(J1M).

Definition 2.2. Elements of the quotient module Ωs
ε(J

1M) = Ωs(J1M)/Is are
called effective s-forms.

By ωε denote the corresponding to ω class in Ωs
ε(J

1M): ωε = ω + Is.
Suppose that n = 2 and find a coordinate representation of effective 2-

forms.
For any element of the factor module Ω2

ε, one can choose a unique rep-
resentative ω ∈ Ω2(J1M) such that X1⌋ω = 0 and ω ∧ dω0 = 0. Here X1

is a contact vector fields with generating function 1. In the local Darboux
coordinates such representatives have the form

ω =Edq1 ∧ dq2 +B (dq1 ∧ dp1 − dq2 ∧ dp2)+ (2.10)

Cdq1 ∧ dp2 − Adq2 ∧ dp1 +Ddp1 ∧ dp2,

where A,B,C,D and E are smooth functions on J1M .
We identify effective forms as elements of the factor module Ω2

ε(J
1M) with

differential forms of type (2.10) and also call such differential forms effective.
Form (2.10) corresponds to equation (2.8).

2.3 Contact transformations of Monge-Ampère equations

Let φ : J1M → J1M be a contact transformation. This transformation pre-
serves the ideal I∗: φ∗(Is) = Is, and therefore determines a map of effective
forms:

φ∗ : ω + Is 7→ φ∗(ω) + I∗.

But φ, in general, does not preserves the Cartan form ω0, and therefore,
does not acts directly on representatives of the effective forms. Thus we shall
define the action φ on ω by taking the effective part φ∗(ω)ε.
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Note that, for any contact transformation and any integral manifold of
the Cartan distribution L ⊂ J1M we have:

φ∗ (ω)ε |L = ω|φ(L),

Hence, if L is a multivalued solution of the equation Eφ∗(ω)ε, then φ(L) is a
multivalued solution of the equation Eω.

Definition 2.3. Two Monge-Ampère equations Eω and Eϖ are contact equiva-
lent if and only if there exists a contact transformation φ and a nonvanishing
function λφ ∈ C∞(J1M) such that

ω = λφφ
∗(ϖ)ε.

As a corollary of our interpretation of Monge-Ampère equations we get
the following theorem.

Theorem 2.2 (Sophus Lie). The class of Monge-Ampère equations is closed
with respect to contact transformations.

Example 11. The Legendre transformation

φ : (x, u, p) 7→ (p, u− px, −x)

transforms the form (2.4) to the form

φ∗(ω) = 3x2dx− dp.

Then the non-linear equation

3(v′)2v′′ − 1 = 0

turns to the following linear equation:

v′′ = 3x2.

Example 12. The Von Karman equation

vx1
vx1x1

− vx2x2
= 0 (2.11)

becomes linear equation
x1vx2x2

+ vx1x1
= 0 (2.12)

after Legendre transformation (2.14). The last equation is known as the Tric-
comi equation.



2.3. Contact transformations of Monge-Ampère equations 25

Example 13 (The Monge-Ampere Equation). This equation has the form

Hess v = 1

and generated by the effective differential 2-form

ω = dp1 ∧ dp2 − dx1 ∧ dx2.

After the Euler transformation

φ : (x1, x2, u, p1, p2) 7→ (p1, x2, u− p1x1, −x1, p2, ).

it becomes
ω = dx2 ∧ dp1 − dx1 ∧ dp2,

and corresponds to the Laplace equation

vx1x1
+ vx2x2

= 0. (2.13)

Example 14 (Quasilinear equations). Let’s consider a quasi-linear equation of
the form:

A (vx, vy) vxx + 2B (vx, vy) vxy + C (vx, vy) vyy = 0.

This equation is represented by the following effective form

ω = B (p1, p2) (dx1 ∧ dp1 − dx2 ∧ dp2)+C (p1, p2) dx1∧dp2−A (p1, p2) dx2∧dp1.

After the Legendre transformation

φ : (x1, x2, u, p1, p2) 7→ (p1, p2, u− p1x1 − p2x2, −x1, −x2, ) (2.14)

we get the following effective form

φ∗(ω) = B (−x1,−x2) (dx1 ∧ dp1 − dx2 ∧ dp2)+

− A (−x1,−x2) dx1 ∧ dp2 + C (−x1,−x2) dx2 ∧ dp1,

which corresponds to linear equation:

−A (−x1,−x2) vx2x2
+ 2B (−x1,−x2) vx1x2

− C (−x1,−x2) vx1x1
= 0.



Lecture 3

Classification of Monge-Ampère
equations

3.1 The Sophus Lie problem

The problem of equivalence and classification of the Monge-Ampère equations
with two independent variables x and y goes back to Sophus Lie’s papers from
the 1870s and 1880s [20, 21, 22].

Lie have raised the following problem.

Find equivalence classes of nonlinear second-order differential equations
with respect to the group of contact transformations.

The important steps in a solution of this problem were made by Darboux
[2, 3, 4] and Goursat [?, ?, ?], who had basically treated the hyperbolic Monge-
Ampère equations.

Lie himself had found conditions to transform a Monge-Ampère equation
to a quasilinear one and to some linear equation with constant coefficients. But
a complete proof of Lie’s theorems had never been published. A problem of
reducibility of hyperbolic and elliptic Monge-Ampère equations, whose coeffi-
cients do not depend on the variable v (they call such equations symplectic), to
the equations with constant coefficients was solved by Lychagin and Rubtsov in
1983 [26].

26
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3.2 Geometry of Monge-Ampère equations on two-dimensional
manifolds

The Monge-Ampère equations on two-dimensional manifolds possess remark-
able geometric structures. We consider them for the general and symplectic
equations separately.

In what follows, we suppose that n = 2 and consider classical Monge-
Ampère equations (2.8) only.

With any effective differential 2-form ω one can associate a smooth func-
tion Pf(ω) on J1M as follows [26]:

Pf(ω)Ω ∧ Ω = ω ∧ ω. (3.1)

This function is called Pfaffian of ω.
If ω has the form (2.10) then

Pf(ω) = DE − AC +B2.

We say that the Monge-Ampère equation Eω is hyperbolic, elliptic or
parabolic at a domain D ⊂ J1M if the function Pf(ω) is negative, positive or
zero at each point of D, respectively.

If the Pfaffian changes a sign in some points of D, then the equation Eω

is called a mixed type equation.
The hyperbolic and elliptic equations are called nondegenerate.
Define a non-holonomic field endomorphisms Aω which is associated with

effective form ω.
Since the 2-form Ωa is non-degenerated on the Cartan distribution C(a),

the operator Aωa
is uniquely defined by the following formula [26]:

Aωa
Xa⌋ Ωa = Xa ⌋ωa. (3.2)

Here Xa ∈ C(a).
To find a coordinate representation of the operator Aω consider the fol-

lowing basis of the module D(C):
d

dq1

def
=

∂

∂q1
+ p1

∂

∂u
,

d

dq2

def
=

∂

∂q2
+ p2

∂

∂u
,

∂

∂p1
,

∂

∂p2
(3.3)
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Then, in this basis, one has the form

Aω =

∥∥∥∥∥∥∥∥∥∥
B −A 0 −D

C −B D 0

0 E B C

−E 0 −A −B

∥∥∥∥∥∥∥∥∥∥
(3.4)

in basis (3.3).
The square of operator Aω is scalar and

A2
ω + Pf(ω) = 0. (3.5)

Remark that the operator Aω is symmetric with respect to Ω, i.e.,

Ω(AωX, Y ) = Ω(X,AωY ) (3.6)

for any X, Y ∈ D(C) [26].
It is clear that effective forms ω and hω, where h is any nonvanishing

function, define the same equation.
Therefore, for a non-degenerate equation Eω the form ω can be normed

in such a way that
|Pf(ω)| = 1.

Then, due to (3.5), the hyperbolic and elliptic equations generate a prod-
uct structure

Aω,a = 1

and a complex structure
Aω,a = −1

on C(a) respectively on the Cartan space C(a) [25].
Thus, a non-degenerate Monge-Ampère equation generates two 2-

dimensional distributions on J1M , which are formed by eigenspaces of the
operator Aωa

.
These eigenspaces C+(a) and C−(a) correspond to the eigenvalues 1 and

−1 or ι and −ι in hyperbolic or elliptic cases respectively. Here ι =
√
−1.

The distributions C+ and C− are called characteristic.
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Figure 3.1: 3-tuple almost product structure for hyperbolic equations

The characteristic distributions are real for the hyperbolic equations and
complex for the elliptic ones. For the elliptic equations they are also complex
conjugate.

Moreover, planes C+(a) and C−(a) are skew-orthogonal with respect to
the symplectic structure Ωa.

On each of them the 2-form Ωa is nondegenerate. It is easy to see that the
first derivatives of the characteristic distributions C(1)

± = C±+[C±, C±] are three-
dimensional. Therefore their intersection l = C(1)

+ ∩ C(1)
− is a one-dimensional

distribution, which is transversal to C [25].
Hence, for the hyperbolic equations the tangent space Ta(J

1M) splits into
the direct sum

TaJ
1M = C+(a)⊕ l(a)⊕ C−(a). (3.7)

at each point a ∈ J1M (see Fig. 3.1) [25].
For elliptic equations we have the similar decomposition of the complexi-

fication of TaJ
1M . But the distributions l is real also in this case.

We say that a non-degenerate equation is called regular if the derivatives
C(k)
± (k = 1, 2, 3) of the characteristic distributions are distributions too.

The above decomposition of the tangent bundle allows us to construct
a decomposition of the de Rham complex, which is generated by an equation
[10, 25].

Denote the distributions C+, l, and C− by P1, P2, and P3, respectively.
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Let D(J1M) be the module of vector fields on J1M , and let Dj be the
module of vector fields from the distribution Pj. Define the following submod-
ules of Ωs(J1M):

Ωs
i = {α ∈ Ωs(J1M)| X⌋α = 0 ∀ X ∈ Dj, j ̸= i} (i = 1, 2, 3).

We get the following decomposition of the module of differential s-forms on
J1M :

Ωs(J1M) =
⊕
|k|=s

Ωk, (3.8)

where k =(k1, k2, k3) is a multi-index, ki ∈ {0, 1, . . . , dimPi}, |k| = k1+k2+k3,

Ωk =

 ∑
j1+j2+j3=|k|

αj1 ∧ αj2 ∧ αj3, where αji ∈ Ωki
i

 ⊂
3⊗

i=1

Ωki
i .

Three first terms of this decomposition are shown on the diagram (see
Fig. 3.2).

The exterior differential also splits into the direct sum of operators

d =
⊕
|t|=1

dt,

where
dt : Ω

k → Ωk+t.

Theorem 3.1. 1. The operators dt are differentiations, i.e. the Leibnitz rule
holds:

dt(α ∧ β) = dtα ∧ β + (−1)degα α ∧ dtβ, (3.9)

where α ∈ Ωk and β ∈ Ωi.
2. If the sum of negative components of the multi-index t less than −1

then dt = 0.
3. If the multi-index t contains one negative component and this compo-

nent is −1 then operator dt is a C∞(N)-homomorphism, i.e.,

dt(fα) = fdtα (3.10)

for any dunction f and any differential form α ∈ Ωk.
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Figure 3.2: Decomposition of the de Rham complex on J1M

Due to this theorem, we have the following eight homomorphisms:

d−1,1,1, d1,−1,1, d1,1,−1, d0,−1,2, d2,−1,0, d−1,0,2, d2,0,−1 d2,0,−1.

and four of them are zero. The nontrivial homomorphisms are the following:

d−1,1,1, d1,1,−1, d2,0−1, and d−1,0,2.

Consider a case
t = 1j + 1k − 1s.

Then the differential dt is a C∞(N)-homomorphisn. Due to Leibnitz’s
rule, this differential is completely defined by its values on Ω1(N).
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Note that

d1j+1k−1s
: Ω1q → 0,

if q ̸= s. Therefore a non-trivial d1j+1k−1s
is a restriction to the module Ω1s:

d1j+1k−1s
: Ω1s → Ω1j ∧ Ω1k.

In other words, these homomorphisms define tensor fields of a type (2,1)
on N . We denote them by τ1j+1k−1s

:

τ1j+1k−1s
∈ Ω1j ∧ Ω1k ⊗Ds.

Note that

τ1j+1k−1s
: Ω1s → Ω1j ∧ Ω1k

coinsides with operator d1j+1k−1s
.

Tensor fields τ1j+1k−1s
are differential invariants of Monge-Ampère equa-

tions.

So, we have four tensors of (2,1)–type:

τ2,−1,0, τ0,−1,2, τ−1,1,1 and τ1,1,−1. (3.11)

Example 15. Coordinate representation of the tensor invariants for the hyper-
bolic Monge-Ampère equations

vxy = f (x, y, v, vx, vy) , (3.12)
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has the following form:

τ−1,1,1 =(ffp2p2dq1 ∧ du− fp2p2dp2 ∧ du− p1fp2p2dq1 ∧ dp2 − p2fp2p2dq2 ∧ dp2+

(fu − p2fp2u + fp1fp2 − ffp1p2 − fq2p2) dq2 ∧ du+

(p1fu − p1p2fp2u − p2ffp2p2 + p1fp1fp2 − p1ffp1p2 − p1fq2p2) dq1 ∧ dq2)

⊗ ∂

∂p1
,

τ1,1,−1 =(ffp1p1dq2 ∧ du− fp1p1dp1 ∧ du− p1fp1p1dq1 ∧ dp1 − p2fp1p1dq2 ∧ dp1+

(fu + fp1fp2 − p1fp1u − ffp1p2 − fq1p1) dq1 ∧ du+

(−p2fu − p2fp1fp2 + p1p2fp1u + p2ffp1p2 + p1ffp1p1 + p2fq1p1) dq1 ∧ dq2)

⊗ ∂

∂p2
,

τ2,−1,0 =(dq1 ∧ dp1 − fp2dq1 ∧ du+ (p2fp2 − f) dq1 ∧ dq2)

⊗
(

∂

∂u
+ fp2

∂

∂p1
+ fp1

∂

∂p2

)
,

τ0,−1,2 =(dq2 ∧ dp2 − fp1dq2 ∧ du− (p1fp1 − f) dq1 ∧ dq2)

⊗
(

∂

∂u
+ fp2

∂

∂p1
+ fp1

∂

∂p2

)
.

3.3 The Laplace forms

Let’s define a bracket ⟨·, ·⟩ by the formula

⟨α⊗X, β ⊗ Y ⟩ = (Y ⌋α) ∧ (X⌋β)

for tensors α⊗X and β ⊗ Y .
Then differential 2-forms

λ+ = ⟨τ0,−1,2, τ1,1,−1⟩ , λ− = ⟨τ2,−1,0, τ−1,1,1⟩ . (3.13)

we call Laplace forms or Laplace invariants of the Monge-Ampère equations
Eω.

Remark 2. For the elliptic equations the Laplace forms are complex conjugate.



34 Lecture 3. Classification of Monge-Ampère equations

Example 16. For equation (3.12), the Laplace forms have the following coor-
dinate representation:

λ− =fp2p2 (fp1dq1 ∧ du− dq1 ∧ dp2)+

(fu − p2fp2u + fp1fp2 − p2fp1fp2p2 − ffp1p2 − fq2p2) dq1 ∧ dq2, (3.14)

λ+ =fp1p1 (fp2dq2 ∧ du− dq2 ∧ dp1)+

(−fu + p1fp1u − fp1fp2 + p1fp2fp1p1 + ffp1p2 + fq1p1) dq1 ∧ dq2. (3.15)

In particular, for linear equation

vxy = a(x, y)vx + b(x, y)vy + c(x, y)v + g(x, y), (3.16)

the Laplace forms are

λ− = kdx ∧ dy and λ+ = −hdx ∧ dy, (3.17)

where

k = ab+ c− by h = ab+ c− ax (3.18)

are the classical Laplace invariants. This observation justifies our definition.

Remark that the classical Laplace invariants (3.18) of equation (3.16) are
not absolute invariants in contrast to the forms λ±.

Example 17. For the linear elliptic equation

vxx + vyy = a(x, y)vx + b(x, y)vy + c(x, y)v + g(x, y) (3.19)

the Laplace forms are

λ± =
1

4

(
bx − ay ±

(
1

2
(a2 + b2) + 2c− ax − by

)
ι

)
dx ∧ dy. (3.20)

The coefficients

K = bx − ay, and H =
1

2
(a2 + b2) + 2c− ax − by (3.21)

of these forms are the Cotton invariants [1].
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3.4 Contact linearization of the Monge-Ampere equations

Consider the following problem:
Find a class of the Monge-Ampère equations that are locally contact equiv-

alent to the linear equations

vxx ± vyy = a(x, y)vx + b(x, y)vy + c(x, y)v + g(x, y). (3.22)

A solution of the problem can be conveniently formulated in terms of the
Laplace forms.

We consider three possible cases.

3.4.1 λ+ = λ− = 0

It is well known that if the classical Lagrange invariants h and k of a linear
hyperbolic equation are zero, then the equation can be reduced to the wave
equation (see [?], for example).

Similar statement is true for the Monge-Ampère equations.

Theorem 3.2 ([13]). A hyperbolic Monge-Ampère equation is locally contact
equivalent to the wave equation vxy = 0 if and only if its Laplace invariants are
zero: λ+ = λ− = 0.

Corollary 2. The equation

vxy = f (x, y, v, vx, vy)

is locally contact equivalent to the wave equation vxy = 0 if and only if the
function f has the following form:

f = φyvx + φxvy + (φv + Φv)vxvy +R,

where the function R = R(x, y, v) satisfies to the following ordinary linear
differential equation:

Rv = (φv + Φv)R + φxy − φxφy.

This equation can be solved:

R = eφ+Φ

(∫
(φxy − φxφy)e

−φ−Φdv + g

)
.

Here φ = φ(x, y, v), Φ = Φ(v), and g = g(x, y) are arbitrary functions.
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Theorem 3.3 ([13]). An elliptic Monge-Ampère equation is locally contact
equivalent to the Poisson equation vxx + vyy = f(x, y) if and only if its Laplace
invariants are zero: λ+ = λ− = 0.

If, in addition, coefficients of the Monge-Ampère equation are analytic
functions, then the equation is locally contact equivalent to the Laplace equation
vxx + vyy = 0.

3.4.2 λ+ ̸= 0 and λ− ̸= 0

Note that for the Laplace invariants of the linear equations (see (3.17) and
(3.20)) the following conditions:

λ+ ∧ λ+ = 0, λ− ∧ λ− = 0, λ+ ∧ λ− = 0, and dλ+ = dλ− = 0 (3.23)

hold.
Hence, for the Monge-Ampère equations that are locally contact equiva-

lent to equation (3.22) this is also true.
It follows from the following Theorem that conditions (3.23) are sufficient.

Theorem 3.4 ([10, 13]). Suppose λ+ ̸= 0 and λ− ̸= 0. A nondegenerate
Monge-Ampère equation is locally contact equivalent to equation (3.22) if and
only if conditions (3.23) hold.

3.4.3 One of the Laplace forms is zero and the another one is not

Due to Remark 2, this case realizes only for the hyperbolic equations.
For definiteness, suppose that λ− = 0 and λ+ ̸= 0. We shall suppose

λ+ ∧ λ+ = 0 because this condition holds for the linear equations. This means
that λ+ = η− ∧ ϑ+, where η− ∈ Ω001 and ϑ+ ∈ Ω100 are differential 1-forms.

Theorem 3.5 (see [13]). Suppose that one of the Laplace forms is zero and the
another one, say λ+, is not. A hyperbolic Monge-Ampère equation is locally
contact equivalent to a linear equation if and only if dλ+ = 0, λ+ = η− ∧ ϑ+,
and the distribution F⟨ϑ+⟩ is completely integrable.
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3.5 The Hunter-Saxton equation

Consider the Hunter-Saxton equation

vtx = vvxx + κv2x, (3.24)

where κ is a constant. This equation is hyperbolic, and it has applications in
the theory of a director field of a liquid crystal [5].

The corresponding effective differential 2-form and the operator Aω are
the following:

ω = 2udq2 ∧ dp1 + dq1 ∧ dp1 − dq2 ∧ dp2 − 2κp21dq1 ∧ dq2

and

Aω =

∥∥∥∥∥∥∥∥∥∥
1 2u 0 0

0 −1 0 0

0 −2κp21 1 0

2κp21 0 2u −1

∥∥∥∥∥∥∥∥∥∥
.

Let us choice the following bases in the module of vector fields on J1M :

X1 =
∂

∂q1
+ p1

∂

∂u
+ κp21

∂

∂p2
,

X2 =
∂

∂p1
+u

∂

∂p2
,

Z =
∂

∂u
+ (2 κ− 1) p1

∂

∂p2
,

Y1 =
∂

∂q2
+κp21

∂

∂p1
− u

∂

∂q1
+ (p2 − up1)

∂

∂u
,

Y2 =
∂

∂p2
.

The dual basis of the module of differential 1-forms is

α1 = dq1 + udq2,

α2 = dp1 − κp21dq2,

θ = du− p1dq1 − p2dq2,

β1 = dq2,

β2 = dp2+(1− 2κ) p1du+ (κ−1) p21dq1+ (2κ− 1) p1p2dq2 − udp1.
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The vector fields X1, X2 and Y1, Y2 form bases of the modles D(C+) and
D(C−) respectively.

Tensor invariants of equation (3.24) have the form:

τ−1,1,1 = − (p1dq1 ∧ dq2 + dq2 ∧ du)⊗
(

∂

∂q1
+ p1

∂

∂u
+ κp21

∂

∂p2

)
,

τ1,1,−1 = 2(κ− 1)
(
κp31dq1 ∧ dq2 + κp21dq2 ∧ du −

dp1 ∧ du − p1dq1 ∧ dp1 − p2dq2 ∧ dp1)⊗
∂

∂p2
,

τ2,−1,0 =
(
dq1 ∧ dp1 − κp21dq1 ∧ dq2 + udq2 ∧ dp1

)
⊗(

∂

∂u
+ (2 κ− 1) p1

∂

∂p2

)
,

τ0,−1,2 =
(
dq2 ∧ dp2 + (1− 2κ) p1dq2 ∧ du+ (1− κ) p21dq1 ∧ dq2 − udq2 ∧ dp1

)
⊗(

∂

∂u
+ (2 κ− 1) p1

∂

∂p2

)
.

Then the Laplace forms for the Hunter-Saxton equation are

λ− = −dq2 ∧ dp1,

λ+ = 2 (1− κ) dq2 ∧ dp1.

Due to Theorem 3.4, the equation is linearized. The required transformation
has the form

Q1 = κq2 +
1

p1
, Q2 = q2, U = u− p1q1, P1 = q1p

2
1, P2 = p2 − κq1p

2
1.

This transformation takes the effective form ω to the form

Ω = dQ1 ∧ dP1 − dQ2 ∧ dP2 +

(
2(2κ− 1)P1

κQ2 −Q1
+

2U

(κQ2 −Q1)2

)
dQ1 ∧ dQ2.

The corresponding linear equation is the Euler-Poisson equation

UQ1Q2
=

2κ− 1

Q1 − κQ2
UQ1

− 1

(Q1 − κQ2)2
U.
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