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Convex optimization

Problem of the form
min  f(x)
T € Q,

where
@ () C R™ convex set:

z,ye@Q, Ae[0,]]=dx+(1-Ny€Q,

e f:(@Q — R convex function:

epigraph(f) = {(z,t) € R""' : 2z € Q,t > f(x)} convex set.
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Special cases

Linear programming
min (¢, y)
Yy

<a¢,y>—b1~20, iZl,...,’l’L.

Semidefinite programming
min (¢, y)
y

21 Ajy = B2 0.

Second-order cone programming

min (¢, y)
Yy

(ai,y) —bi > [|Aiy — dill2, i=1,. ..
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Agenda

@ Applications
@ Algorithms

@ Open problems
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Applications
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Classification

Classification data

D = {(x1,01),...,(xn, )}, with 2; € R%, £; € {~1,1}.

Linear classification
Find (8o, 3) € R such that fori=1,...,n

sgn(Bo + (B, x4)) = 4 & £i(Bo + (4, 3)) > 0.

Support vector machines
Find linear classifier with largest margin

min
min 5]

) Z’L(<$Zw8>+/80)2172:177n
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Regression

Regression data

D={(x1,y1),---,(Tn,yn)}, with x; € R?, y; € R.

Linear regression

Find 8 € R? that minimizes training error:

min 3 (o + (4,2:) = yi)* & min]| X0~y
=1

1 xI n

2
2

41



Sparse regression

High dimensional regression

D={(x1,y1)s--, (T, yn)}, 7; € R y; €R, large d, e.g., d > n.

Want 3 € R? sparse:

min_ (|IX8 = ylI3 + A+ 18]o)

1Bllo := i : Bi # O}

Lasso regression (Tibshirani, 1996)

The above problem is computationally intractable. Use instead

min (X8 =yl + A~ 51)

Extensions
Group lasso, fused lasso, and others.
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Compressive sensing

Raw 3MB jpeg versus a compressed 0.3MB version.

Question
If an image is compressible, can it be acquired efficiently?

/41



Compressive sensing

Compressibility corresponds to sparsity in a suitable representation.

Restatement of the above question:

Question

Can we recover a sparse vector & € R from m < n linear
measurements

by = (ak,x), k=1,...,m < b= Az.

Example (group testing)

Suppose only one component of Z is different from zero.
Then logy, n measurements or fewer suffice to find .
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Compressive sensing via linear programming

Possible approach to recover sparse &

Take m < n measurements b = AZ and solve

min |[z(lo
x

Ax =b.
The above is computationally intractable. Use instead

min ||z
X

Az =b.

Theorem (Candés & Tao, 2005)

If m 2 s-logn and A is suitably chosen. Then the
{1-minimization problem recovers T with high probability.
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Matrix completion

Problem

Assume M € R™™ "™ has low rank and we observe some entries of
M. Can we recover M?

Possible approach to recover low rank M

Assume we observe entries in 2 C {1,...,n} x {1,...,n}. Solve

n}}n rank(X)

Rank-minimization is computationally intractable.
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Matrix completion via semidefinite programming

Fazel, 2001: Use instead
min  [|X ||«
X . .
Xij = M;j, (i,7) € .

Here || - ||« is the nuclear norm:

X1 = 0i(x).
=1

Theorem (Candes & Recht, 2010)

Assume rank(M) = r and Q random, |Q| > Cur(1 + ) log®n.
Then the nuclear norm minimization problem recovers M with
with high probability.
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Algorithms
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Late 20th century: interior-point methods

To solve
min (c,z)
x

T € Q.
Trace path {z(p) : > 0}, where z(p) minimizes

Fu(z) = (e,2) + p- [ ().

Here f : Q — R a suitable barrier function for Q).

Some barrier functions

Q f
{y:{ai,y) —b;>0,i=1,....,n} | =3 log({ai,y) — b;)

{y: X0 Ay — B= 0} | —logdet (S0, Ajy; — B)

15 /41



Interior-point methods

Recall Fj,(x) = (c,x) + p- f(x) and f: Q — R barrier function.

Template of interior-point method
@ pick pp > 0 and xo ~ x(uo)
e fort=0,1,2,...

pick fre1 < put
Tipl i= Ty — [Fltﬂ(ﬂﬁt)]_lFLtH(%)
end for

The above can be done so that x; — x*, where x* solves

min (c,z)
x

T € Q.
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Interior-point methods

Features

Superb theoretical properties.

@ Numerical performance far better than what theory states.
@ Excellent accuracy.
°

Commercial and open-source implementations.

Limitations

@ Barrier function for entire constraint set.

@ Solve a system of equations (Newton's step) at each iteration.
@ Numerically challenged for very large or dense problems.
]

Often inadequate for above applications.
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Early 21th century: algorithms with simpler iterations

Tradeoff the above features vs limitations.

In many applications modest accuracy is fine.

Interior-point methods

Need barrier function for entire constraint set, second-order
information (gradient & Hessian), and solve systems of equations.

Simpler algorithms

Use less information about the problem. Avoid costly operations.
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Convex feasibility problem

Assume Q C R™ is a convex set and consider the problem
Find y € Q.
@ Any convex optimization problem can be recast this way.

o Difficulty depends on how () is described.

@ Assume a separation oracle for ) C R™ is available.

Separation oracle for ()
Given y € R™, verify y € @ or generate 0 # a € R™ such that

(a,y) < {(a,v), Yv € Q.
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Examples
o Linear inequalities: a; e R™, b, e R, i =1,...,n

QZ{yERm : (ai,y) —b; >0, i=1,...,n}.
Oracle: Given y, check each (a;,y) —b; > 0.

@ Linear matrix inequalities: B, A; e R™*", j=1,...,m
symmetric,

Q: yeRm:ZAjyj—BEO
j=1

Oracle: Given y, check 23”:1 Ajy; — B = 0. If this fails, get
u # 0 such that

m m
ZuAuy] (u, Bu) §ZuAuvj,VU€Q
7j=1

Jj=1
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Relaxation method (Agmon, Motzkin-Schoenberg)

Assume |la;|l2 =1, i =1,...,n and consider

Q:{yeRm:<ai7y>2bi7 7’:17’77‘}

Relaxation method
@ yp:=0;t:=0
@ while there exists i such that (a;,y:) < b;
Y1 =y — AMbi — (@i, yr))a;
t=t+1
end

Theorem (Agmon, 1954)
IfQ # 0 and X € (0,2) then yy — 5 € Q.

Theorem (Motzkin-Schoenberg, 1954)
Ifint(Q) # 0 and A = 2 then y, € Q for t large enough.
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Perceptron algorithm (Rosenblatt, 1958)

Consider
C={yecR™: ATy >0},

where A=[a1 ... ap] €R™", |aiflz=1,i=1,...,n.

Perceptron algorithm
@ yp:=0;t:=0
e while there exists i such that (a;,y;) <0

Yit+1 = Y + a;
t:=t+1
end
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Cone width

Assume C' C R™ is a convex cone. The width of C is

7o = sup {r:Ba(y,r) C C}.
llylla=1

Observe: 7¢ > 0 if and only if int(C') # 0.

Theorem (Block, Novikoff 1962)

Assume C' = {y € R™ : ATy > 0} # (). Then the perceptron

algorithm finds y € C' is at most T% iterations.
C
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General perceptron algorithm

The perceptron algorithm and the above convergence rate hold for
a general convex cone C provided a separation oracle is available.

Notation

S™ 1= {v e R™: |||l = 1}.

Perceptron algorithm (general case)
@ y:=0;t:=0
o whiley ¢ C
let @ € S™! be such that (a,y) <0 < (a,v),Vv € C

Y41 ‘=Yt +a
t:=t+1
end
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Rescaled perceptron algorithm (Soheili-P 2013)

Key idea
If C CR™ is a convex cone and a € S 1 is such that

1
CClycR™:0< (a,y) < —— :
c {y < (a,y) Mllylb}

then dilate space along a to get wider C' := (I 4 aa™)C.

Lemma

If C,a,C are as above then vol(C' N S™1) > 1.5vol(C NS™1).

Lemma

If C is a convex cone then vol(C N S™~1) > 1Ti _ vol(S™1).

TC
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Rescaled perceptron algorithm (Soheili-P 2013)

Assume a separation oracle for C' is available.

Rescaled perceptron

(1) Run perceptron for C' up to 6m* steps
(2) Identify a € S™! such that

cc{yermio<an < Iyl
(3) Rescale: C:= (I +aa")C ; and go back to (1).
Theorem (Soheili-P 2013)

Assume int(C') # (). The above rescaled perceptron algorithm finds
y € C is at most O (m5 log (%)) perceptron steps.

Recall: Perceptron stops after 2 steps.
TC
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Perceptron algorithm again

Consider again ATy > 0 where ||a;lla =1, i=1,...,n.

Perceptron algorithm (slight variant)
° yo :=0;
o fort=0,1,...
a; == argmin{(a;,y:) 1 j=1,...,n}
Y41 =Y+ aq
end
Let z(y) := argmin$€An(ATy,x>, where
Ay ={xeR":2>0, ||z|) =1}.

Normalized perceptron algorithm
® yo :=0;
e fort=0,1,...

Yey1 = (1 — H%)yt + H%Ax(yt)
end
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Smooth perceptron (Soheili-P 2011)

Key idea
Use a smooth version of

2(y) = argmin(ATy, 2),
ISYANS

namely,

B exp(—ATy/w)
Tu(y) = | exp(—ATy/ )|

for some p > 0.
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Smooth Perceptron Algorithm

Letﬂt:: tZO,].,

15%2; Kt = (t+1)4(t+2)’

Smooth Perceptron Algorithm
o yo = LAL; mg == 2y, (y0);
o fort=0,1,...

Yer1 = (1 = 0;)(ye + 01 Axy) + Q?Afﬂm (yt)
Ter1 = (1 — Ozt + Oy, (Yer1)

end for

Recall main loop in the normalized version:
fort=0,1,...
Yer1 = (1 - t%)yt + H%Ax(yt)

end for
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Theorem (Soheili & P, 2011)

Assume C = {y € R™ : ATy > 0} # (). Then the above smooth
perceptron algorithm finds y € C in at most

2¢/2log(n)

TC

elementary iterations.

Remarks
@ Smooth version retains the algorithm’s original simplicity.

@ Improvement on perceptron iteration bound T%
C

@ Very weak dependence on n.

30/41



Binary classification again

Classification data
D = {(u1,01),..., (un, )}, with u; € RY, £, € {—1,1}.

Linear classification
Find 3 € R? such that fori =1,...,n

sgn(6Tu;) = £; < Liu] B> 0.
Taking A= [fyu; -+ {yuy] and y = 3 can rephrase as

ATy > 0.
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Kernels and Reproducing Kernel Hilbert Spaces

o Assume K : R? x RY — R symmetric positive definite kernel:
Vl’l, R o~ Rd, [K(l‘l, xj)]ij > 0.

@ Reproducing Kernel Hilbert Space

]—"K::{ Zﬁz ), Bi €R, z € RY, HfHK<oo}.
@ Feature mapping
¢:RY— Fi
ur— K(-,u)

o For f € Fx and u € R? we have f(u) = (f, ¢(u))k
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Kernelized classification

Nonlinear kernelized classification
Find f € Fx such thatfori=1,...,n

Sgn(f(ui)) =0, & Ezf(uz) >0

Separation margin

Assume D = {(uy,¥1),..., (un,¢n)} and K are given. Define the
margin pg as

pr = sup min 4;f(u;).
”f”K:lz:l,...,n
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Kernelized smooth perceptron

Theorem (Ramdas & P 2014)
Assume pr > 0.
(a) Kernelized version of the smooth perceptron finds a nonlinear

2v/2logn||D||
PK

separator after at most iterations.

(b) Kernelized smooth perceptron generates f; € Fx such that

N 2+/2logn||D
I 1l < V28R

where f* € F separator with best margin.
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Open problems
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Smale's 9th problem

Is there a polynomial-time algorithm over the real numbers which
decides the feasibility of the linear system of inequalities Ax > b7

Related work

@ Tardos, 1986: A polynomial algorithm for combinatorial linear
programs.

@ Renegar, Freund, Cucker, P (2000s): Algorithms that are

polynomial in problem dimension and condition number
C(A,Db).

@ Ye, 2005: A polynomial interior-point algorithm for the
Markov Decision Problem with fixed discount rate.

@ Ye, 2011: The simplex method is polynomial for the Markov
Decision Problem with fixed discount rate.

36
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Hirsch conjecture

A polyhedron is a set of form
{yERm : <ai,y>—bi >0, iZl,...,TL}.

A face of a polyhedron is a non-empty intersection with a
non-cutting hyperplane.

Vertices: zero-dimensional faces.

Edges: one-dimensional faces.
Facets: highest-dimensional faces.

Observation
The vertices and edges of a polyhedron form a graph.
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Hirsch conjecture

Conjecture (Hirsch, 1957)

For every polyhedron P with n facets and dimension d
diam(P) <n —d.

Related work
o Klee and Walkup, 1967: Unbounded counterexample.
@ True for special classes of bounded polyhedra.
@ Santos, 2012: First bounded counterexample.
o Todd, 2014: diam(P) < dlos2(=),

Question
Small bound (e.g., linear in n, d) on diam(P)?
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Lax conjecture

Definition
A homogeneous polynomial p € R[z] is hyperbolic if there exists
e € R™ such that for every x € R" the roots of

t — p(x + te)
are real.

Theorem (Garding, 1959)

Assume p is hyperbolic. Then each connected component of
{z € R" : p(z) > 0} is an open convex cone.

Hyperbolicity cone: Connected component of {z € R" : p(z) > 0}
for some hyperbolic polynomial p.
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Lax conjecture

Question

Can every hyperbolicity cone be described in terms of linear matrix
inequalities?

m
yER™: > Ajy; =0
j=1
Related work

@ Helton and Vinnikov, 2007: Every hyperbolicity cone in R3 is
of the form

{y eR?: Iz + Agxo + Asxs = O},

for some symmetric matrices Ay, As (Lax conjecture, 1958).

@ Branden, 2011: Disproved some versions of this conjecture for
more general hyperbolicity cones in R"™.
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